
Secure Ethernet Communication for Autonomous Driving

Dr. Roman Pallierer, Dr. Michael Ziehensack Automotive Ethernet Congress 2016, February 3-4, Munich

Motivation

Advanced driver assistance systems (ADAS) are evolving towards autonomous driving

- From alert & assist... e.g. lane departure warning, lane keeping assist
- ... to features taking more control
 - e.g. highway chauffeur, valet parking

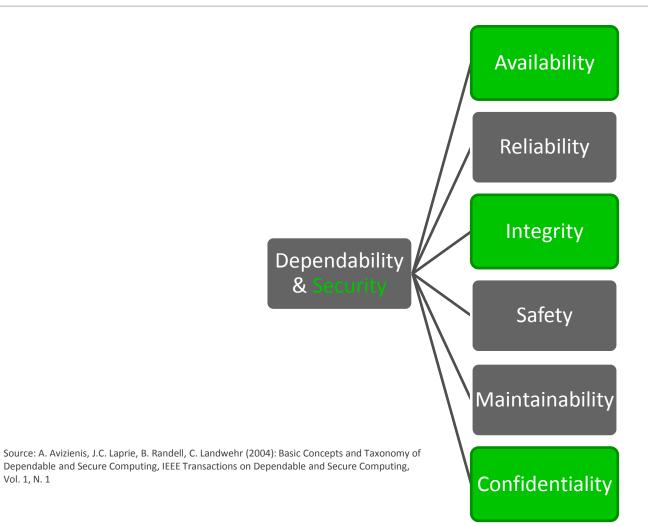
Automotive Ethernet is a key enabler for autonomous driving. Secure Ethernet Communication is required to ensure:

Availability

- Sensor data is available on time to create an environment model of the vehicle
- Actuator commands are sent correctly to control the vehicle

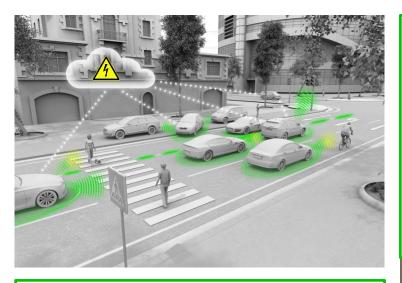
Integrity

- Sensor and actuator data are sent by authorized parties only to avoid manipulation
- Sensor and actuator data is not altered, removed or delayed to avoid manipulation


Confidentiality

 Sensor and actuator data are not monitored by unauthorized 3rd parties to protect driver's privacy

Elektrobit


Dependability & Security

Vol. 1, N. 1

Security issues in a safety environment

- Safety: Protection against nonmalicious faults, e.g. EMV
- Security: Protection against malicious faults, e.g. intended attacks

Security protects Safety

There is no safety without security

Secure communication

Protection against effects of malicious faults on the communication link

• Types of Attack:

- injection of malicious control commands
- prevention of correct system function (insertion, deletion, manipulation, replay and delay of messages)

• Points of Attack:

- additional nodes (e.g. via OBD connector or wireless access)
- corrupted and misused existing nodes (e.g. root access to infotainment system via cellular network)
- nodes replaced by manipulated ones

- New threats can emerge during system operation
- Threats are attacks (malicious, human made, external)
- Goal: Protect assets (property, environment and human life)

Solution: Multi-Level Security Architecture

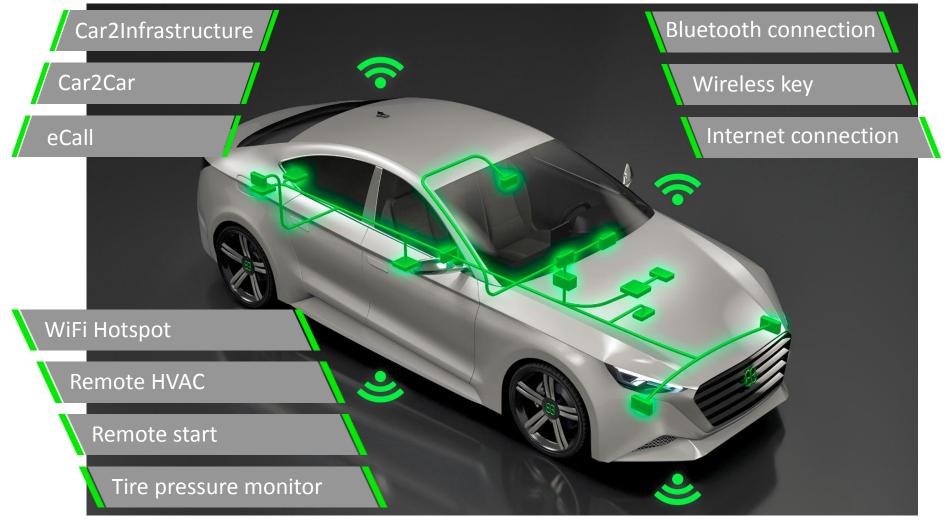
Enhanced connectivity and the dynamics of the security threats demand to establish several security barriers in order to avoid a full exposure in case a security mechanism is bypassed.

Approach: establish security mechanisms on four levels:

Level 1: restrict access to the network
Level 2: secure onboard communication
Level 3: apply data usage policies
Level 4: detect anomalies and defend

Goal:

Protect against attacks violating the availability, integrity and confidentiality.

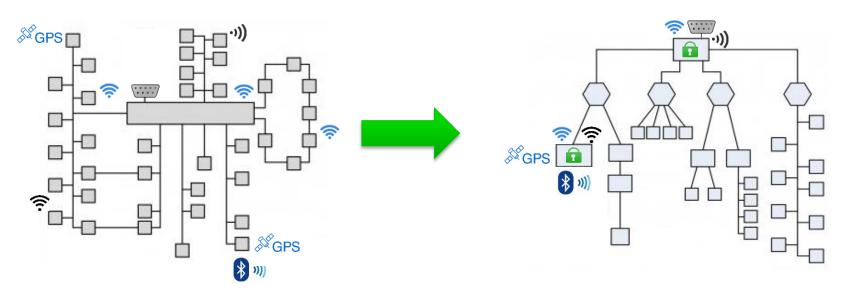

Multi-Level Security Architecture

	Level 1: Restrict access to the network
	Level 2: Secure onboard communication
	Level 3: Apply data usage policies
	Level 4: Detect anomalies and defend

7

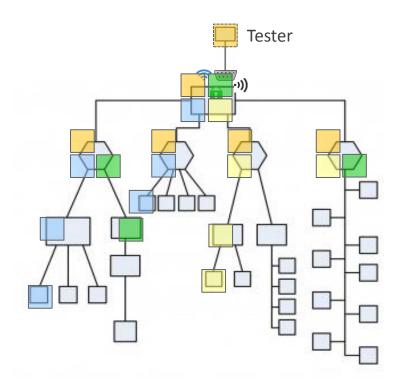
Various access points to the network

Automotive Ethernet Congress 2016, © Elektrobit, Pallierer / Ziehensack


8

8

Level 1: Restrict access to the network (I)

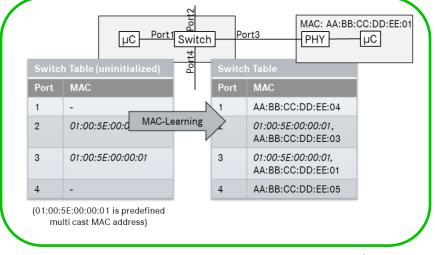

- Limit the number of ECUs with off-board connections (WLAN, bluetooth, cellular, wireless key, DAB, OBD plug, PLC), e.g. via
 - central network access point with stateful firewall
 - diagnostic communication from external tester to ECUs via central gateway (communication between tester and central gateway via TLS)

Level 1: Restrict access to the network (II)

- Divide network into security zones, e.g. extern, "demilitarized", internal. And restrict traffic between zones: Physical split or separation via VLANs
- Not only extern-intern, but also intern-intern, e.g. infotainment to powertrain

VLAN Tagging to separate external – internal

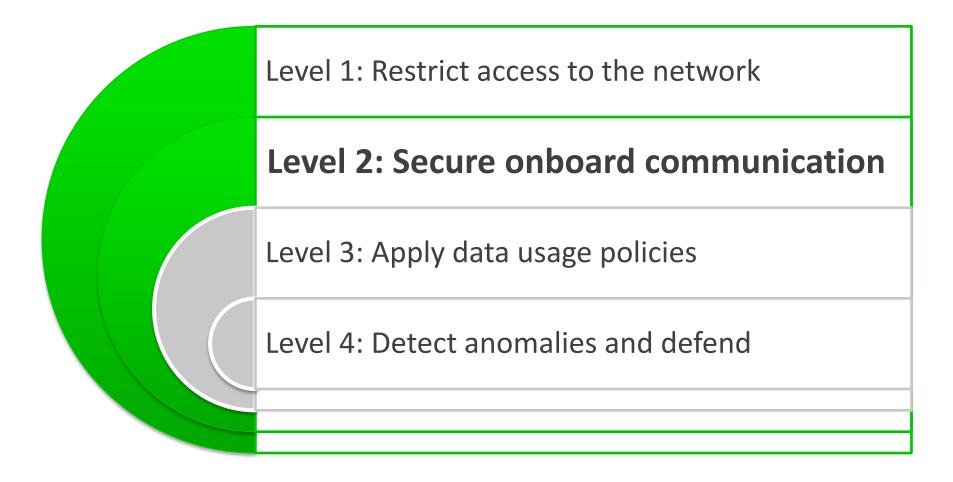
- All frames from the external tester are tagged with an orange VLAN tag at the switch located at the GW
- Thus only nodes assigned to the orange VLAN can receive frames from the external tester
- Frames to be sent to external tester, are sent via the orange VLAN – the switch at the gateway removes the orange VLAN tags before forwarding it to the tester


VLAN Tagging to separate internal networks

- ECUs from Infotainment (blue VLAN), chassis (green VLAN) and powertrain (yellow VLAN) can be separated, i.e. will only see frames from the assigned VLANs
- Traffic between VLANs require a switch or Gateway

Level 1: Restrict access to the network (III)

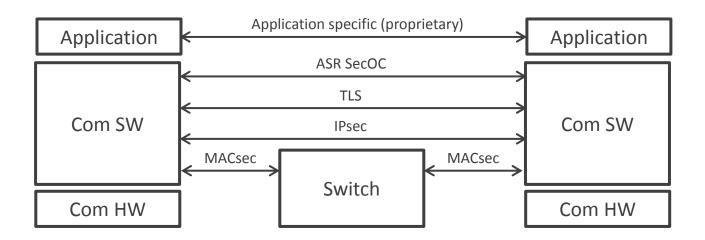
- static Ethernet Switch Forwarding tables OR MAC learning only during learning mode (e.g. end-of-line)
- static ARP tables at nodes OR Address Resolution Protocol only during learning mode (e.g. end-of-line)



Source: AUTOSAR 4.2 EthSwt SWS

- device authentication/authorization
- deactivation of unused (non authorized) ports

Multi-Level Security Architecture



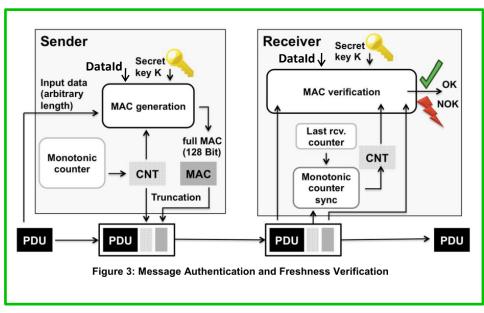
Level 2: Secure onboard communication (I)

Data integrity, authentication, encryption

- Authentication and integrity of critical frames
- Symmetric key because of calculation effort (and required bandwidth)
- Encryption for exchange of session keys
- Choice of protection layer and protocol:

Level 2: Secure onboard communication (II)

Data integrity, authentication, encryption - Protocols


Protocol	Standard	Type/Layer	Authent.	Encryption	Comment
MACsec	IEEE 802.1AE	Hop-by-hop Data-Link	Х	Х	Requires crypto/keys at each network node
IPsec AH (Authentication Header)	IETF RfC 4302	End-to-End IP	Х	-	
IPsec ESP (Encapsulating Security Payload)	IETF RfC 4303	End-to-End IP	Х	Х	
TLS 1.2 (Transport Layer Security)	IETF RfC 5246	End-to-End TCP	Х	Х	Does not work with UDP
SecOC	AUTOSAR	End-to-End PDUs	Х	-	supports MACtruncation (works also with CAN / FlexRay)

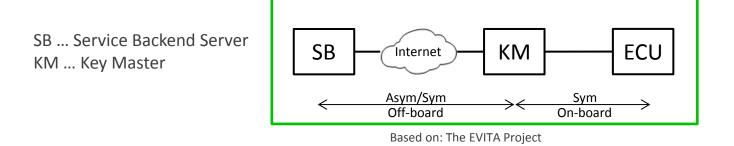
Level 2: Secure onboard communication (III)

Data integrity, authentication using AUTOSAR SecOC

- Authentication and integrity of critical frames based on Message Authentication Code (MAC, i.e. usage of symmetric key) and freshness value (counter or timestamp)
- Symmetric key because of calculation effort (and required bandwidth)
- Sender generates MAC based on Datald, data, freshness value and secret key.
 MAC and freshness value are transmitted together with PDU data.
- Receiver verifies MAC based on received data and freshness value as well as locally stored secrete key, Datald
- CNT/MAC truncation can be used if message length is very limited.

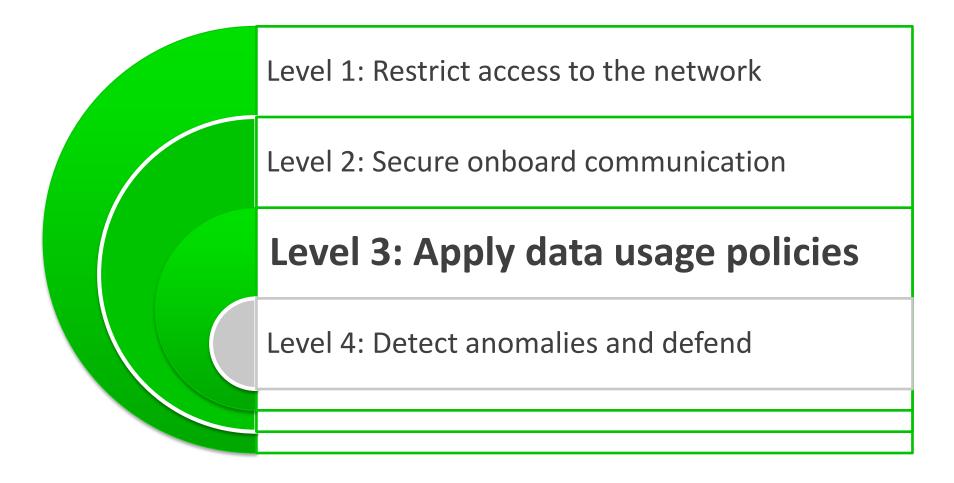
Source: AUTOSAR 4.2 SecOC SWS

Level 2: Secure onboard communication (IV)


Design principles for key usage (for encryption and authentication)

- Distinct keys for different functions, e.g.
 - Traffic Encryption Key (TEK): used for encryption/decryption of traffic
 - Key Encryption Key (KEK): unique for each ECU and used only for en/decryption of TEK
 - If TEK gets compromised, a new TEK can be distributed via KEK
 - If KEK of an ECU gets compromised, a new TEK can still be securely distributed to the other ECUs (as they are using all different KEKs)
- A key shall only be used for securing a limited number of data
 - TEK is only valid for a certain period to limit the exposure in case of compromise
 - Furthermore critical communication is clustered into secure communication groups, e.g. separate TEKs for ADAS sensors, chassis and powertrain communication.
- For efficient execution of cryptographic functions and secure key storage a hardware security module (HSM) is used in combination with software crypto libraries.

Level 2: Secure onboard communication (V)


Design principle for Key Management (Generation, Distribution and Storage)

- Service Backend (off-board) >> KeyMaster (on-board):
 - Communication between SB and KM is encrypted using asymmetric cryptography
 - SB configures and triggers key exchange at KM
- KeyMaster >> ECUs:
 - Communication between KM and ECUs is encrypted using symmetric cryptography
 - KM generates communication group session keys (TEK) if triggered, e.g. by the SB, a timeout or a diagnostic request
 - KM assigns TEKs to ECUs by using the related Key Encryption Key (KEK) of the ECU
 - ECU securely stores the keys in its HSM

Multi-Level Security Architecture

Level 3: Apply data usage policies

Define data usage policies to limit the exposure

- Use service specific know how to implement policies in the application
 - Control Data: accept control commands only in specific application states, define priorities of requester
 - Sensor data: validate the contents of data (context, history, ...)

Examples

- allow diagnostic messages only in specific vehicle state, e.g. speed is less than 5mph or drivers door open
- allow massive steering/braking/acceleration change only in certain vehicle state (e.g. crash indication, driver request in 'sport' mode, ...)
- use more than one sensor (instance) to determine if the vehicle is not moving

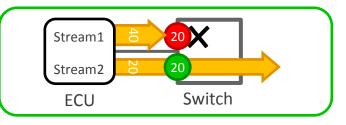
Challenges

- Highly application dependent
- Side-effect must be considered

Multi-Level Security Architecture

	Level 1: Restrict access to the network
	Level 2: Secure onboard communication
	Level 3: Apply data usage policies
	Level 4: Detect anomalies and defend

Level 4: Detect anomalies at the network and defend


Anomalies: deviations to specified communication matrices

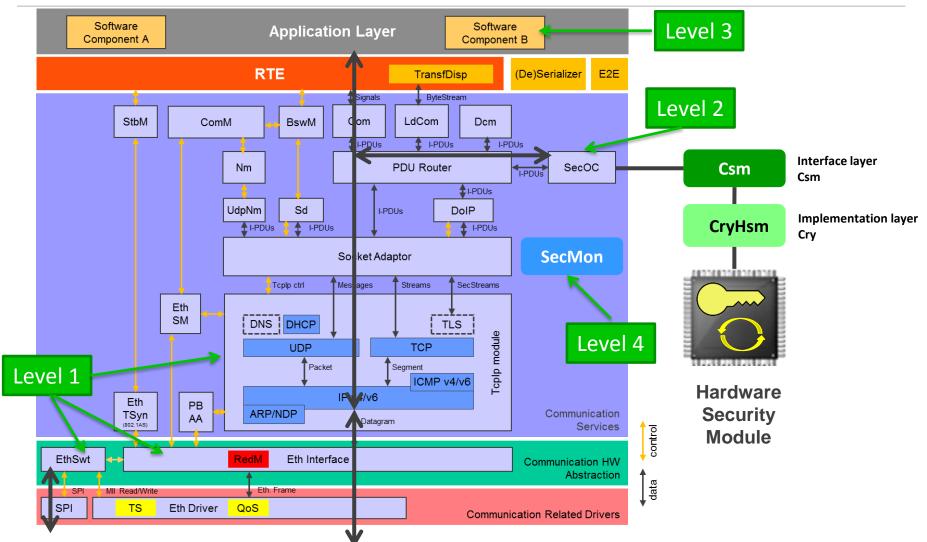
e.g. cyclic message is received more often than defined, very high network load, 1:n message received with different source addresses, ...

• **Detection:** via central device or at the receiver

e.g. plausibility check based on diverse input data or data sequence, failed integrity checks

- **Defend:** report (e.g. DTC, involvement of driver, ...) and start mitigation
 - mask (e.g. block messages from infotainment ECU, block messages from "babbling idiot" by enforcing bandwidth limitation at switches) or

• reconfigure (e.g. deactivation of critical functions, initiate hand-over in case of autonomous driving, request change of session key ...)


Summary: Protection by the security levels

Levels protecting against attacks violating the availability, integrity and confidentiality:

Level	Availability	Integrity	Confidentiality
Level 1: restrict access to the network	Yes	Yes	Yes
Level 2: secure onboard communication	No (DoS attacks)	Yes	Yes
Level 3: apply data usage policies	No (DoS attacks)	Yes	No (eavesdropping)
Level 4: detect anomalies and defend	Yes	(Yes)	No (eavesdropping)

Multi-level security architecture with AUTOSAR

Automotive Ethernet Congress 2016, © Elektrobit, Pallierer 7 Ziehensack

Summary

- Autonomous driving requires secure communication to protect against malicious attacks
- Multi-level security architecture
 - ensures availability, integrity and confidentiality
- Security mechanisms
 - Lots of experience from IT industry
 - Adaptations for automotive necessary and implemented
 - First steps of standardization for security in automotive achieved, more needed.
- Solutions are available, use them to secure Ethernet for autonomous driving.

Thank you!

automotive.elektrobit.com/ethernet

<u>Roman.Pallierer@elektrobit.com</u> <u>Michael.Ziehensack@elektrobit.com</u>

We take you to the fast lane!