Automotive Ethernet and other automotive networks

Automotive Ethernet
and other automotive networks

CAN, LIN, FlexRay, and automotive Ethernet solutions based on AUTOSAR

Contact us

Bus systems for in-vehicle AUTOSAR networks – CAN, LIN, FlexRay, CAN FD, automotive Ethernet

Megatrends such as automated driving, connected car, smart devices, and e-mobility are on the rise, requiring scalable in-vehicle software architecture, dependable systems with more computing power, and solutions for fail operational systems. The more systems included in a vehicle network, the more complex the communication between the electronic control units (ECUs) becomes. There is a need for high bandwidth to support the increasing data transfer needs of future networks in the cars, such as automotive Ethernet can offer. Furthermore, hardware and software separation demand virtual machines as independent execution environments for different Tier 1 suppliers on a single ECU for safety and security reasons.

Ethernet solutions for Classic and Adaptive AUTOSAR

Our portfolio of Ethernet products offers a full spectrum, from Classic ECUs to HPCs in combination with Ethernet hardware switch or without. We offer a variety of products for the domain, centralized, and future zoned architecture. EB’s products support the whole range of architectures from domain-oriented to centralized, up to tomorrow’s zoned architectures. Thus, EB’s product portfolio is the solution for existing and future vehicle infrastructure design approaches.

Integration on communication stacks

CAN, LIN, FlexRay, and Ethernet are all integrated into the communication stack of EB tresos AutoCore and EB corbos AdaptiveCore, which encompasses the AUTOSAR communication services for vehicle network communication. These services provide a uniform interface to the vehicle network-independent of the communication protocol used – and are required in every AUTOSAR communication stack.

Benefits

AUTOSAR-ready Ethernet

EB’s automotive IP/Ethernet basic software solutions are embedded in the AUTOSAR-based EB tresos AutoCore and EB corbos AdaptiveCore product family.

Strong network in the industry

EB’s close cooperation with car makers on specifications and implementations as they introduce innovative new methods such as service-based architectures, time-sensitive networks, or automotive plug and play.

Ethernet testing

Providing a high-quality level for implementation, ensured by extensive Ethernet conformance tests.

CAN LIN, FlexRay, J1939

Series-production-approved network communication solutions for CAN, LIN, FlexRay and SAE J1939.

CAN, LIN, FlexRay, and Ethernet features

Maximum flexibility with solutions for both communication paradigms: signal- and service-based

  • Signal-based network communication paradigm

    Current automotive networks follow a signal-based communication paradigm. This method of communication typically involves the transmission of short messages with individual, densely packed values (signals). They are broadcasted to all network nodes and forwarded to interested applications via efficient filters.

  • Service-based network communication paradigm

    Ethernet’s high bandwidth enables the use of service-based communication. This provides a flexible and scalable method to handle the increasing complexity of signals exchanged within the car. In contrast to the well-proven signal-based method, the service-based version uses a subscription-based way of data exchange. EB offers a boilerplate for the underlying network infrastructure to enable customers to use the network instead of engineering or debugging it.

 

Time-sensitive control data exchange

  • Extending Ethernet with time-sensitive networking will enable new automotive applications that not only require a higher bandwidth, but also guarantee worst-case latencies and global time-base synchronization between the ECUs. EB supports time-sensitive technologies such as AVB and the application protocols on top of it such as AVTP and others.

 

Ethernet testing

  • Automotive Ethernet-based devices and systems introduce new challenges for testing and verification, requiring test methodologies that depend on both automotive domain expertise and best practices.

Further information on EB’s Ethernet solution

  • Further information
  • Training

EB tresos automotive Ethernet training

Duration: 3 days

Format: in-house and public training

This course introduces you to the physical layers, communication protocols, and how Ethernet is standardized in AUTOSAR. Learn how to build a demo application that runs on the Windows environment with EB tresos ACG.

Details